MaxEnt versus MaxLike: empirical comparisons with ant species distributions

نویسندگان

  • MATTHEW C. FITZPATRICK
  • NICHOLAS J. GOTELLI
  • AARON M. ELLISON
چکیده

MaxEnt is one of the most widely used tools in ecology, biogeography, and evolution for modeling and mapping species distributions using presence-only occurrence records and associated environmental covariates. Despite its popularity, the exponential model implemented by MaxEnt does not directly estimate occurrence probability, the natural quantity of interest when modeling species distributions. Instead, MaxEnt generates an index of relative habitat suitability. MaxLike, a newly introduced maximum-likelihood technique, has been shown to overcome the problem of directly estimating the probability of occurrence using presence-only data. However, the performance and relative merits of MaxEnt and MaxLike remain largely untested, especially when modeling species with relatively few occurrence data that encompass only a portion of the geographic range of the species. Using georeferenced occurrence records for six species of ants in New England, we provide comparisons of MaxEnt and MaxLike. We show that by most quantitative metrics, the performance of MaxLike exceeds that of MaxEnt, regardless of whether MaxEnt models account for sampling bias and include greater model complexity than implemented in MaxLike. More importantly, for most species, the relative suitability index estimated by MaxEnt often was poorly correlated with the probability of occurrence estimated by MaxLike, suggesting that the two methods are estimating different quantities. For species distribution modeling, MaxLike, and similar models that are based on an explicit sampling process and that directly estimate probability of occurrence, should be considered as important alternatives to the widely-used MaxEnt

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple MaxEnt Models for Food Web Degree Distributions

Degree distributions have been widely used to characterize biological networks including food webs, and play a vital role in recent models of food web structure. While food webs degree distributions have been suggested to follow various functional forms, to date there has been no mechanistic or statistical explanation for these forms. Here I introduce models for the degree distributions of food...

متن کامل

Performance Guarantees for Regularized Maximum Entropy Density Estimation

We consider the problem of estimating an unknown probability distribution from samples using the principle of maximum entropy (maxent). To alleviate overfitting with a very large number of features, we propose applying the maxent principle with relaxed constraints on the expectations of the features. By convex duality, this turns out to be equivalent to finding the Gibbs distribution minimizing...

متن کامل

Using district-level occurrences in MaxEnt for predicting the invasion potential of an exotic insect pest in India

Insect pests are a major threat to agricultural biosecurity across the world, causing substantial economic losses. Majority of the species distribution modeling studies use precise coordinates (latitude/longitude) of species occurrences in MaxEnt (or maximum entropy model). However, lack of precise coordinates of insect pest occurrences at national/regional level is a common problem for many co...

متن کامل

Species abundance distributions, statistical mechanics and the priors of MaxEnt.

The methods of Maximum Entropy have been deployed for some years to address the problem of species abundance distributions. In this approach, it is important to identify the correct weighting factors, or priors, to be applied before maximising the entropy function subject to constraints. The forms of such priors depend not only on the exact problem but can also depend on the way it is set up; p...

متن کامل

Stochastic Comparisons of Probability Distribution Functions with Experimental Data in a Liquid-Liquid Extraction Column for Determination of Drop Size Distributions

The droplet size distribution in the column is usually represented as the average volume to surface area, known as the Sauter mean drop diameter. It is a key variable in the extraction column design. A study of the drop size distribution and Sauter-mean drop diameter for a liquid-liquid extraction column has been presented for a range of operating conditions and three different liquid-liquid sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013